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composites fibreux, modélisation, petite échelle

Résumé

Nous nous intéressons au contrôle non-destructif électromagnétique de panneaux composites fibreux, en hypothèse petite
échelle, la longueur d’onde de l’excitation étant proche de la dimension des structures (cylindres circulaires) en réseau
1-D à l’intérieur de chaque nappe des panneaux, le milieu effectif standard ne tenant plus. Les travaux, préliminaires ici,
s’appuient sur des recherches princeps en poro-élasticité et photonique, mais ils entendent s’appliquer à des structures
fibres de carbone ou de verre pour lesquelles certaines sondes peuvent apprécier les cylindres d’une nappe d’une manière
quasi individuelle.

1 General scope of the investigation

The contribution is about the electromagnetic (em) modeling and imaging of damaged, or better said, disorganized pe-
riodic structures. That is, a certain pattern within an elementary subdivision (cell) is repeated in the other cells of the
structure into certain directions of space. This repetition is affected (disorganized) by changes of material properties
and/or geometry of the constitutive parts, in one cell or several. Collecting em responses of such disorganized structures
should yield images that exhibit location of the damaged zone(s).
Application is Non-destructive Testing (NdT) of synthetic panels of fiber composites, as, e.g., in aeronautic and

automotive parts. At a first level of modeling, they can be viewed as piles of planar plates one over the other, each made of
a regular linear arrangement of long cylinders with same circular sections, all oriented into the same direction (fibers) and
whose constitutive material differs from the embeddingmaterial (matrix) which they are reinforcing. Then, for conductive
panels (e.g., carbon-based), imaging should be in the low-frequency regime of eddy currents, and for lossless or weakly
lossy panels (e.g., glass-based), in the high-frequency regime of microwaves.

2 Large- and small-scale modeling

Two hypotheses can be made at modeling stage. At large scale (large enough local wavelength in propagative regimes or
skin depth in diffusive ones vs. key geometric features), locally averaged tensor parameters characterize each plate and
are inserted into Maxwell’s PDE [1]. [We do not consider this case here.] At small scale (small enough local wavelength
or skin depth vs. geometry), the assumption is that each cell is containing one unique circular cylinder with due repetition,
the orientation of the cylinders changing from one plate to the next. Then, since a given (undamaged) plate can be seen
as infinitely periodic if of large lateral extent, it behaves like an infinite array, prone to Floquet-related modeling, to be
weighted in vs. the limited spatial extent of the probing fields generated by most NdT probes (coils, dipoles, etc.), which
means a finite number of cylinders effectively interacting. [We consider this case here.]

3 The main theoretical analysis

The analysis borrows a lot from pioneering poro-acoustics and elasticity (infinite extent case) [2] and photonics (limited
extent case) [3] analyses. Yet it is tailored to the peculiar em configuration of concern, notably when highly-conductive
(but not impenetrable) carbon fibers are immersed in a dielectric polymer and probed in MHz range, the preliminary case
of TE- and TM-polarized planar incident fields impinging upon one single slab being focused onto.
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The structure under scrutiny is sketched in Figure 1. A set of cylinders parallel to each other and directed in the y
direction is embedded in a planar plate infinite in both x and y directions with interfaces Γa (z = a) and Γb (z = b).
The cylinders are arranged periodically in the x direction with period d. Each is of radius c. So, each cell, as shown
in the figure, has a width of d and height of L = a − b, the reference (unit) cell being the one displayed at the center.
Correspondingly, the space is divided into subspaces R±

0 , R1 and R2. Otherwise, all materials are linear isotropic,
possibly lossy (save the upper half-space), with εj and μj , j = 0, 1, 2, as permittivities and permeabilities.
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Figure 1: Plate including a periodic set of cylinders in x direction with plane of incidence as x − z

plane.

The TM-polarized incident plane wave with plane of incidence x− z and obliquely impinging with θi angle upon the
plate is such that its electric field reads as �Einc = ŷEince

i[ki
xx−ki

z(z−a)] with implied time-harmonic dependence eiωt.
�ki is the wave number vector of the incident wave, with absolute value ki, and kix = ki sin θi, kiz = ki cos θi, are its x-
and z-components of �ki. Wave numbers of regions R±

0 , R1 and R2 are k0, k1 and k2 respectively, all of them satisfying
the dispersion relation kj = ω

√
εjμj , j = 0, 1, 2. We will let whether necessary �kj = αj x̂ + βj ẑ, j = 0, 1, 2, αj and

βj as x and z components of �kj . Let us notice here that the analysis (TM- or E-polarization) is also suitable to TE- or
H-polarization cases, via application of electromagnetic duality, the field of interest then being the magnetic one, and
permittivity/permeability being exchanged (this does not mean that the numerics and the em behavior will be similar).
The particular feature of the problem is the transverse periodicity of the inclusions in regionR2. According to the Flo-

quet theorem, this periodicity and the planewave nature yield the well-known relationEjy(x+d, z) = Ejy(x, z)e
iα0nd, j =

0, 1, 2,whereEjy are the fields in RegionR±
0 ,R1 andR2, denoting fields in regionR+

0 andR
−
0 asE

+
0y andE

−
0y to separate

them. As for the magnetic field,Hjx = − 1
iωμ

∂
∂z
Ejy , j = 0, 1, 2.

Using a plane wave expansion, we write the field in regionsR+
0 and R

−

0 in the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E+
0y(x, z) =

∑
p∈Z

(Eince
−iβ0p(z−a)δp0 +Rpe

iβ0p(z−a))eiαpx,

E−
0y(x, z) =

∑
p∈Z

Tpe
i(αpx−β0p(z−b));

(1)

Rp and Tp are the reflection and transmission coefficients of the plane wave indexed by p, δp0 the Kronecker symbol,
αp = α0 + 2pπ/d, and βjp =

√
k2j − α2

p, j = 0, 1. Across the interfaces Γa and Γb, the tangential components of wave

vector �kj , j = 0, 1, are continuous, so we set αp instead of αjp in all equations.
In region R1, according to superposition principle, the total field equals to the sum of the field scattered by the

inclusions and the diffracted field in the plate. We write it in Cartesian coordinates as

E±

1y(x, z) =
∑
p∈Z

(f−
p e−iβ1pz + f+

p eiβ1pz)eiαpx +
∑
p∈Z

∑
l∈Z

BlK
±

ple
i(αpx±β1pz). (2)

In the above, the f±
p coefficients account for the field diffracted by the plate, signs + and − corresponding to waves

propagating into the +z and −z directions, respectively. The Bl coefficients are those of the field scattered by the
cylinder of the unit cell, and from somewhat standard analysisK±

pl =
2(−i)le±ilθp

dβ1p
. Applying the boundary conditions on

Γa and Γb with the field representation in region R±
0 and R1, we get the solution for Rp and Tp as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tp =
1

Dp

[
4hpEincδp0 +

∑
l∈Z

8(−i)lhpBl

dβ1p
[i sin(lθp + β1pa)− hp cos(lθp + β1pa)]

]

Rp =−
1

Dp

[
2i sin(β1pL)(h

2
p − 1)Eincδp0 +

∑
l∈Z

8(−i)lhpBl

dβ1p
(hp cos(lθp + β1pb) + i sin(lθp + β1pb))

]
;

(3)

here,Dp = 2i sin(β1pL)(h
2
p+1)−4hp cos(β1pL), hp =

μ0β1p

μ1β0p
. It is obvious that transmission and reflection coefficients

are related to the coefficients Bl. They are calculated by the Multipole Method [4, 5]: the field in the vicinity of one
cylinder (in an annular domain not intersecting any other cylinder) is expanded into terms of Bessel and Hankel functions

2

URSI-FranceJournées scientifiques 26/27 mars 2013

260



as is usual. By comparing the field expansion with the cylindrical form of equation (2) and using rather basic knowledge
on cylinders’ scattering [6], we derive an iterative relationship that is yielding the soughtBl.
In the study of the diffraction problems related to the periodic structure depicted in Figure 1, lattice sums (a class of

Schlömilch series) arise naturally. In accord with the fact that we deal with 1-D periodicity in a 2-D scattering case, they
are defined as [5] Sl =

∑+∞

n=1 H
(1)
l (k1nd)[e

iα0nd + (−1)le−iα0nd] whereinH(1)
l (x) is the first kind Hankel function of

lth order,α0 = k0sin(θ
i). In general, such a representation of the lattice sum is too slowly convergent either for numerical

computations or for the determination of the explicit dependence of Sl upon parameters l, d and α0. Its calculation is
key to the efficient numerical solution of Bl, especially when the material of the plate (in region R1) is lossless (k1 real-
valued). In order to compute it quickly and accurately, an alternative representation is required. Much literature exists on
this problem [7, 8], and it is still being actively studied, e.g., [9, 10].

4 On-going work

We have been implementing the above into numerical simulations. Reproduction of results in acoustics [2] in both TE and
TM cases via equivalences of density and compressibility to electromagnetic parameters has been reached, underlining
that attenuation in the matrix material is much simplifiying the computations.
Yet, in the context of NdT, the computations are expected to complicate. For carbon-fiber-reinforced composites, the

(epoxy) matrix exhibits relative permittivities close to 4 (this value is a matter of further discussion) and shows no loss
(conductivity below 10−10 S/m) while the (carbon) fibers are of conductivities typically about 105 S/m, see [11], i.e., we
have high electromagnetic contrast vs. the matrix yet no impenetrability at the usual 1 − 10 MHz range of testing. For
glass-fiber-reinforced composites, low permittivity contrasts are observed, with glass fibers of relative permittivities about
6 (varying with frequency) and small but not negligible loss everywhere (imaginary parts of relative permittivities about
0.1 to 0.2) at the usual 1− 10 GHz range of testing. To achieve proper convergence of the numerical results then remains
an issue, since neither the above, well-documented acoustic case nor cases found in the vast literature on photonic crystals
apply straightforwardly. It remains also to be seen, provided that the frequency of interrogation is low enough, whether
considering the p = 0 mode under normal illumination leads to effective (”large-scale”) parameters of the panel.
As for advances in the formulation itself, one next step could be on magnetic/electric line sources parallel with the

cylinders’ axes outside or inside the panel (then, either in the cylinders or outside them) to get the scalar Green’s functions
of the undamaged structure. But it seems to be more interesting to directly extend what has been done so far to a 2.5-
dimensional case when the plane of incidence of the plane waves is no more orthogonal to the cylinders’ axes (TE and
TM couple),with aiming at constructing the dyadic Green’s functions of interest. Ultimately, the analysis must develop
onto the damaged case (one or several missing cylinders) via a properly designed field integral formulation.
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