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Abstract 
In this paper, a hybrid 2D-Measurement technique is presented for the estimation of the remote position of an active reflector unit 
(Tag), in terms of radial distance and azimuth angle. The technique is based on Interferometry and FMCW multistatic radar 
system which operates in the European UWB frequency band [6-8.5 GHz]. The measurements have been performed in a real 
indoor environment for the line-of-sight case with respect to a single known reference position. The estimated root-mean-square 
errors observed are 2.1cm & 7.1° over [1 1.6] m & [45° 90°], respectively.  
 

Introduction 
The Indoor Localization with an accuracy under a meter-scale is a great challenge. Although, an accuracy of a meter-scale may be 
interesting to help people to find ways around museums, airports, malls but it is not adequate for many other situations [1].  Most of 
known techniques are based on radio-signature or time delay measurement which presents an accuracy of more than a meter. 
Another drawback is that the number of known references/anchors and their positions play an important role in the localization 
estimation. Generally, it requires at least three known positions for the location [2-3]. The presented system just requires a single 
known position for 2D localization and it uses a hybrid-technique based on Frequency-of-Arrival (FOA) and Frequency-
Difference-of-Arrival (FDOA). The architecture, the technique and the system performance are presented in this paper which is 
used for the 2D position estimation of a remote active-Tag in a real Indoor Environment for a Line-of-Sight (LOS) case. 
 
1. System Design Consideration and Implementation 

1.1. System design and consideration   
This paper describes a system using two jointly techniques, FMCW multistatic radar and optic’s interferometry techniques, for 2D 
localization of a remote active-Tag. The main advantages of this system, compared to [1-3] are: only one known reference 
position is used for location-estimation and simultaneously, the multipath effects can be strongly reduced by shifting the 
frequency spectrum by the active-Tag (to be localized). This technique requires the measurements of the FOA and FDOA which 
lead to the computation of radial distance and azimuth-angle as Angle-of-Arrival (AoA), simultaneously. The system design 
consists of two main subsystems: Localization Base Station & the active-Tag. The schematic of the LBS, allowing the 
localization of an active-Tag by using FMCW radar technique, is shown in Fig 1. 
 

 
Fig. 1. On the left: Architecture defined for the LBS & active-Tag.  

It consists of one transmitting antenna (A0) and two receiving antennas (A1 & A2) which are placed closely on the same axis. A 
linearly swept sinusoidal FMCW signal covering the 6-7 GHz (∆f=1GHz) frequency is generated with a sweep time, Tm=10 msec, 
and then this signal is up-converted to 7.5-8.5 GHz and finally amplified before being transmitted by the antenna A0 towards the 
active-Tag. The up-conversion is done with a Local Oscillator (1.5 GHz) and a mixer.  Each RF chain of the LBS (two receivers 
and one transmitter) is connected to a dedicated circular polarized antenna [4-5]. The transmitter antenna is connected to a linearly 
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sinusoidal FMCW signal (6-7 GHz) generator via a 10dB coupler. The output of the coupled-port is taken as the reference signal, 
and that of the transmitter-port is attached to the transmitter antenna (A0, see Fig 1-2). The transmitted antenna has used the LHCP 
waveform and the reception of the signal is considered as the RHCP waveform via an active-Tag. 

The Active-Tag is used as a remote active-reflector. It includes a frequency down-converter (1.5GHz), two amplifiers, two 
bandpass filters (BPF), and a dual circular polarised antenna [6]. The incoming signal, from A0, is down-shifted by 1.5GHz 
frequency. It helps in cancelling & suppressing the feedback in Tag and multipath effects produced by the radio channel as well as 
in reducing the coupling effects among the antennas- A0, A1, & A2. The two bandpass filters ([7.5-8.5 GHz] & [6-7 GHz] frequency 
bands) are used to filter the downlink and uplink channels at the active-Tag. The retransmitted FMCW signal (6-7 GHz) from the 
tag is received by the two antennas (A1 & A2) separated by a distance denoted dbaseline (Fig 1).  The delays to reach A1 and A2 from 
the tag are TDelay1 & TDelay2, respectively. The two receiver chains (Rx-Chain) of the LBS are identical and based on a heterodyne 
structure. Each one consists of a bandpass filter (6-7 GHz), a low noise amplifier and a mixer for the down conversion of incoming 
signals from 6-7 GHz to baseband signals by mixing with the reference signal (generated FMCW signal, 6-7 GHz). 

The realized Indoor Localization System (ILS) is shown in Fig 2; the active-Tag and LBS are shown on the left and right sides, 
respectively. 

 

Fig. 2. Realized ILS: Active-Tag & LBS. 

The photo of the active-Tag shows the antenna mounted on a white-box which contains the filters and mixers as the architecture 
presented in Fig 1. The active-Tag uses a dedicated dual circular polarized antenna designed for the European UWB band, 6-
8.5GHz [6].  For the active-Tag, a single antenna is used for the reception and transmission of the signals with different circularly 
polarizations of radio-frequency waveforms.  The RHCP (right hand circular polarized) waveform (7.5-8.5 GHz) is used for the 
signal’s reception and the LHCP (left hand circular polarized) waveform is used for the retransmission of the down-shifted signal 
(7.5-8.5 GHz), simultaneously. 

The dedicated waveforms (RHCP & LHCP) and frequency spectrums (6-7 & 7.5-8.5 GHz’s) for the wireless link between LBS 
and active-Tag will help in reducing the mutual coupling among the antennas at the LBS as well as in suppressing the strong 
echoes/backscatters of an indoor environment. 

1.2. Technique for 2D-Measurement [7] 
The transmitted signal from A0 reaches to A1 & A2 via the active-Tag with some delays- TDelay1 & TDelay2, respectively. 

Therefore, the calculation of the radial distance d between the LBS and the Tag can be done by measuring the average value of the 
paths A0-Tag-A1 and A0-Tag-A2 which is computed with the help of FMCW Radar technique for the delays (TDelay1 & TDelay2) as 
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Where, Tm is sweep time of FMCW signal (10msec), ∆f is equal to 1GHz, and the frequency-shifts (FS1 and FS2) are measured 
by the FMCW radar for the paths A0-Tag-A1 and A0-Tag-A2, respectively. 
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The AoA computation is based on the interferometry techniques. Using the FMCW radar of the Fig.2, the frequency difference 
(FS2-FS1) between two independent incoming signals gives the path difference (Path_dif) between them, and the Path_dif gives the 
azimuth angle (α, AoA) at A0 to the baseline as  

            cos*_ baselineddifPath                  (3) 

Using the relation (1) in (2), the path difference between can be expressed as: 
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From, the relation (3) and (4), the AoA (α) is obtained as, 
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Further, the frequency shifts can be evaluated as the phase shifts over the time as    
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The frequency difference may be written as 
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Assuming that  1, 2(t) has linear relationship with time and its initial value is zero that is:  1, 2(t)=0. Hence, over the sweep time Tm, 
FS21 can be expressed as:  
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Therefore, the AoA given by (5) can be expressed as 
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Where ∆ 21=  2(Tm)-  1(Tm) over Tm.  

Hence, the computation of α gives the azimuth angle of the target by measuring the phase shift over the sweep time Tm for the two 
incoming parallel signals with the use of radar interferometry. 

The relation (2) and (10) can be used for the 2D measurement in the polar form with-‘d’ and ‘α’ as range and angle parameters. 

 
2. Measurements And Results 
The estimation of the range and angle-of-arrival in a real indoor environment for the LOS case are presented in this section. The 
position of the remote active-Tag has been estimated in polar form, i.e. range and its angle with respect to the known position of 
LBS. 

2.1. System’s caibration 
The calibration of the ILS is performed in order to validate the system’s measurement performance by determining the delays in 
ILS’s circuit (transmitter, Tag & receivers). The measurements taken by the ILS are compared with the reference position of the 
tag. The configuration used for the calibration is depicted on the left side of Fig 3. 

The transmitter antenna (A0) is kept at the midpoint of the baseline’s length (dbaseline) and the two receiver antennas (A1 & A2) are 
placed at the each end of the baseline. All antennas’ positions lie on a collinear line that passes through the three antennas (A1, A2 
& A0), and active-Tag is positioned at an equidistance from the two receiver antennas, that is, orthogonal to the baseline as shown 
on the left side of Fig 3. 
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Fig. 3. On the left: Scheme for system calibration, and on the right: Scheme for range & angle-of-arrival measurements. 

The calibration is performed for the fixed length of baseline, i.e. dbaseline=0.30m. The active-Tag is moved on the A0-M``` axis. 
Hence, the distance measured by the two receiver antennas, at A1 & A2 from A0 via the active-Tag, must remains identical. Also, 
the angle-of-arrival (AoA) measured by the receiver antennas must always remain the same, i.e. 90°, with respect to the collinear 
line (baseline) passing through A1-A0-A2. The relationships 1 & 2 have been used for the one-way range estimation. The observed 
mean delay by the receivers- A1 & A2 in terms of distance are 3.56m & 3.59m, respectively; the mismatch observed by the 
receivers (with antennas- A1 & A2) in terms of the distance is 3cm. These calibrated delays have been used during the estimation 
of unknown position of the active-Tag. 

2.2. Range and Angle-of-Arrival estimation 
The measurement has been done by keeping the active-Tag at different positions with respect to a fixed position of the LBS (at 
origin). The various parameters used in the signal transmitting and during processing are: a) Bandwidth of the FMCW Signal: 
1GHz, b) Modulation time (time of sweep): 10msec, c) Sampling Frequency (data acquisition card): 22.5MHz, and baseline 
length (dbaseline): 0.30m, respectively.  
The known random position has been considered for the active-Tag while the position of LBS remains fixed at one point. Then 
the estimation of Tag’s position in terms of range and angle are simultaneously computed according to relation 11 & 10. 
Thereafter, the estimated positions are compared with the known ones for the error determination.   
Since the ILS structure is symmetric about the orthogonal axis to the baseline, therefore, the measurement carried out for one 
quadrant will also be valid for the adjacent quadrant on the same side of baseline. Hence, the measurement is only done for a 
single quadrant for a sector of 45° (from 45° to 90°) and hence, it represents the sector of 90° as marked on the right side of Fig 3. 

2.3. Results 
The estimated range and angle-of-arrival are shown in Fig 4 & 5, respectively. 

 

Fig. 4. Estimated range and its root-mean-square error 

The estimated ranges (Fig. 4) are represented in red-colour along the x-axis and its corresponding errors are represented by the y-
axis. The observed root-mean-square error is 2.1cm which is shown in red dotted line, and the observed maximum error is 4.5cm 
around 1.22m (estimated range).  The reason behind such a variation from other results may be due the harsh conditions of an 
indoor environment as the fading effect. All other estimated data have an absolute error within 3.6cm. Hence, this shows the 
robustness of the system in a real indoor environment for the LOS case. Moreover, this 3.6 cm figure is perhaps overestimated as 
the known active-Tag position is given by using a meter-tape. 
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Similarly, the x-axis of Fig 5 shows the estimated AoA while y-axis shows the error in AoA estimation. The observed root-mean-
square error is equal to 7.1° and its maximum error is 16.6°. The variation of the deviation comes from the measurement of the 
frequencies FS1 & FS2 for the computation of the path-difference (difference in distance measured by the two receiver chains). As it 
was oberved in the range estimation case (error 4.5cm), a single large error 16.6° is also present here which might be accounted 
for the fading because of harsh indoor conditions while rest of the data are under 10°. 

 
Fig. 5. Estimated AoA and its root-mean-square error 

 
3. Conclusion 
This paper presents a hybrid technique for 2D position estimation of an active-Tag in a real indoor environment for a LOS case 
with accuracy around few centimetres (2cm). The estimated parameters (range & angle) demonstrate the robustness of the system 
for minimizing the multipath and back-scattering effects while utilizing a single known reference (anchor) position as LBS for 2D 
measurement. Using a single known reference position gives a great advantage in terms of synchronization-free system as 
compared to other methods, like in triangulation, where a good synchronization among the different reference positions becomes a 
necessary condition to obtain a good performance. Thus, the use of one known reference position makes the presented system into a 
less complex with an accuracy of few centimetres.    
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