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Abstract 
Future wireless networks are expected to be dense, self-organizing, energy efficient and cost effective. The network will 
be thus complex and will consist of a number of autonomously heterogeneous subsystems that should dynamically 
adapt their actions to ensure that the receivers decode packets correctly. Several nodes in the network should perform 
their actions in a fully decentralized way without exchanging information between each other (or with limited 
information exchange). This adds additional challenges to the problems of resource allocation in wireless networks. Our 
aim here is to provide a brief overview of the main resource allocation challenges in future wireless networks. An 
example of a resource allocation framework that does not require information exchange between the transmitters is 
provided.   
 
Introduction 
The proliferation of wireless multimedia applications necessitates the development of more advanced wireless systems 
that can support the expected high amount of mobile data traffic in the next years. It has been adopted by the 3GPP that 
the future 5G cellular networks must support the 1000-fold increase in traffic demand. This requires not only 
developing new physical layer techniques, e.g. Massive MIMO [1] and Millimeter wave (mmWave) [2], but also 
adopting a new architecture of the network. In fact, the increase of the capacity of macro cells cannot meet the 
requirement of future traffic demands. The network must have a more distributed architecture. Therefore, a user centric 
architecture would be adopted and the current concepts of uplink and downlink would be then reconsidered. The 
concept of Cloud RAN (Radio Access Network) is also emerging [3] where the processing of multiple base stations 
(that can be connected to a server platform through high rate backhaul) can be performed using real time virtualization 
techniques. Furthermore, smarter devices will be used and device-to-device (D2D) communications may be used in 
order the enable the exchange of traffic directly between users. Local caching of popular video traffic at devices and 
RAN edge can be used as well [4].  This will increase the capacity and spectral efficiency of the network. In this new 
architecture, two nodes can communicate with each other through various possible heterogeneous nodes (base station, 
small cell, D2D, multi-hop, etc.). Clearly, this will create additional challenges in allocating the resources in the 
network.    
 
 
1. Resource Allocation in Future Wireless Networks 
The resource allocation frameworks will be impacted by the new architecture of the network. Fully distributed 
algorithms that consider the advanced physical layer and traffic patterns must be developed. In addition, due the 
increase in number of users and resources, these algorithms must have very low computational complexity. One can 
therefore summarize the main challenges in developing resource allocation strategies as follows, 

• The complexity of the problem: the computational complexity is the main issue to check especially with the 
increase of number of users and resources (e.g. massive MIMO). For NP-hard problems, low complexity sub-
optimal solutions must be developed.  

• The physical layer: the resources to allocate and the form of the resource optimization framework (e.g. 
convex/non-convex, combinatorial, etc.) depend mainly on the physical layer.  

• The traffic pattern and QoS/QoE: this will add stochastic constraints to the optimization framework depending 
on the service used (real time, streaming, etc.).  

• The non-existence of a central entity that can handle the allocation (e.g. D2D) and the amount of information 
exchange (signaling) between transmitters. This changes radically the formulation of the problem and the 
mathematical tools used to solve it (stochastic game theory, distributed optimization, distributed learning, etc.).  

• The connectivity of the nodes especially in D2D communication.  
• The availability at the transmitter of the system state information (e.g. CSI).   
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It is worth mentioning that some of the aforementioned points are already considered in the design of current resource 
allocation strategies. However, their impact will be more prominent in future wireless networks.  
 
Several mathematical tools can be used to formulate and solve the resource allocation problems: game theory (and mean 
field game), distributed optimization, stochastic control, stochastic network optimization, learning, stochastic geometry, 
etc. These tools can be of great help to solve the problems in future wireless networks. In fact, there has been in the past 
substantial work on resource allocation using the aforementioned tools. For example, different approaches, mainly 
based on gradient descent/ascent method and distributed learning [5-7], have been developed to solve distributed 
optimization problems. Game theory has been an area of active research over the past decade (e.g. one can refer to [8] 
and the references therein). Recently, Nash equilibrium-seeking techniques have attracted a lot of attention due to their 
ability of dealing with distributed settings with limited information exchange in the network [9-12].  
On the other hand, the aforementioned optimization and game frameworks tend to ignore the stochastic nature in the 
traffic patterns. However, the network must cope with a wide range of stochastic dynamics since the multimedia traffic 
is time varying and bursty in nature. In order to ensure QoS of the users, strong stability of the queues of the users is a 
necessary condition to fulfill in this case. Stochastic network optimization and stochastic control techniques can be then 
used in this context (e.g. one can refer to [13] and the references therein). Furthermore, randomized allocation policies 
can be used to develop such strategies as well. For example, decentralized scheduling algorithms were developed in 
series of works [14-18] with varying complexities and performances. A class of CSMA-based scheduling algorithms 
[19-22] is shown to have interesting throughput guarantees. However, most of the aforementioned works can only be 
used either for simple physical layer (conflict graph, etc.) or if one has an accurate abstraction of the physical layer. The 
extension of such policies to deal with the advanced physical layer of future networks is a challenging task.  

 
2. Example of a resource allocation framework [11] 
We provide here an example of a resource allocation framework that can be applied in the context of future networks. 
The scenario consists in a network of n interacting nodes or agents where each one has a reward function to maximize. 
The decision of each node has an impact on the rewards of the other nodes. Without loss of generality, the network is 
modeled as a set of transmitter-receiver pairs that interact with each other. Each transmitter-receiver pair has its own 
reward function that depends on the action of all the nodes in the network. The reward depends also on the state of the 
nodes (e.g. channel state) that is assumed to be a stochastic ergodic process. Unlike most of existing work (e.g. gradient 
based techniques, etc.), we assume that the reward function of each node has a complicated structure or unknown 
expression, e.g. user goodput or throughput. Recall that no closed form expression for rate/goodput is available 
especially for advanced coding scheme. Furthermore, we assume that each transmitter can only exchange an estimation 
of its own reward (i.e. numerical real value) with its own receiver. No other information exchange is allowed in the 
network. 
 
The objective is to optimize a long-term reward function for all the nodes as follows, 
 
Sup 
aj∈Α j

ΕS rj (S,aj,a− j )( )  ∀ j =1,...,N  

 
Where Aj is the action space of node j, S is the state space of the whole system, and the node reward rj(S,aj,a-j) is a 
smooth function. The state space S is a stochastic ergodic process that evolves such that ES(rj(S,aj,a-j)) is always finite.  
 
In order to provide a solution to the aforementioned problem, we use the framework of Nash equilibrium seeking with 
continuous action spaces. Recently, there has been an increasing interest in non-model based Nash/extremum seeking 
techniques [9-10]. Distributed learning algorithms based on sinus perturbation, vanishing sinus perturbation and 
stochastic non-sinusoidal perturbations are developed (e.g. [9-10]). Although the above works are very promising, they 
do not cover the case of stochastic state dependent reward, which is very common in wireless networks where the 
channel is time varying. In [11-12], we have extended the framework of [9] to a more realistic wireless network 
scenario where the time is discrete and the payoff functions are stochastic state dependent. 
 
We first propose a discrete leaning algorithm that can be applied separately by each transmitter/node. At each time k, 
each node applies the following algorithm [11]:  
 
aj (k) =α j (k)+ bj sin ω jtk +ϕ j( )
α j (k) =α j (k −1)+εkbjz j sin ω jtk +ϕ j( )rj (k)

 

 
Where aj(k) is the action of the user at time k and rj(k) is the estimated numerical value of the reward of node j at time k. 
The other parameters in the aforementioned two equations are predefined constants.       
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In [11], we prove that our algorithm converges locally to a state independent Nash equilibrium for vanishing step size. 
Furthermore, we provide an error bound for the convergence for fixed step size. In addition, in [12], we have applied 
the above framework to the problem of power control in wireless networks. We have shown numerically that the 
aforementioned algorithm converges to Nash equilibrium. One can refer to [12] for more details.  
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