

Conception et Mesure d'un Circuit Rectenna en Bande ISM à 2.45 GHz

Application à l'Alimentation d'un Capteur de Température

Hakim TAKHEDMIT, Laurent CIRIO et Odile PICON

Université Paris-Est Marne-la-Vallée Laboratoire ESYCOM (EA 2552)

Journées scientifiques URSI France, 25-26 Mars 2014 – CNAM, Paris

- 1. Introduction
- 2. Description du circuit de conversion RF-DC
- 3. Modélisation numérique FDTD-3D de la rectenna
- 4. Validation expérimentale et résultats
- 5. Application: Alimentation à distance d'un capteur de température
- 6. Conclusions et perspectives

1. Introduction

Problématique et Motivations

- Améliorer l'autonomie des objets communicants et tendre vers l'efficacité énergétique.
- S'affranchir des solutions d'alimentation conventionnelles par pile ou par batterie, non respectueuses de l'environnement.

Solution proposée: Récupération et conversion d'énergie électromagnétique

Qu'est ce qu'une rectenna?

 Bande ISM à 2.45 GHz: libre de licence et dédiée aux applications Industrielles, scientifiques et médicales.

• Substrat Rogers Duroid 5880:

 ϵ_r = 2.2, h = 1.575 mm, tan δ = 0.0009

- o Deux accès symétriques adaptés 50 Ω
- Quatre diodes Schottky HSMS 286X en SOT 23
- \circ Charge optimale (R_L) : 1.2 k Ω à 10 mW
- Impédance série des diodes: 78 j256 Ω à 10
 mW (puissance totale)
- Outil de simulation et d'optimisation : ADS (HB + Momentum)
- Objectif: maximiser le rendement de conversion
 RF-DC (η)

$$\eta(\%) = 100 \times \frac{P_{\rm DC}}{P_{\rm RF}} = 100 \times \frac{V_{\rm DC}^2}{P_{\rm RF} \times R_L}$$

Microstrip-line section	Length (mm)	Width (mm)	$Z_{C}(\Omega)$
L_1, W_1	10	4.8	50
L ₂ , W ₂	17.6	1.53	95
L_3, W_3	17.9	1.53	95
L_4, W_4	11.5	0.95	117

Résultats de simulation ADS

• Bonne adaptation dans la bande ISM à 2.45 GHz pour des puissances RF supérieures à 1 mW.

Résultats de simulation ADS

- \circ Rendement optimum autour de R_L = 1.2 k Ω
- \circ Le rendement diminue lorsque $\Delta \Phi$ augmente.

Méthode des différences finies dans le domaine temporel

- Discrétisation spatio-temporelle des équations de Maxwell
- Maillage tridimensionnel (3D)
- Répartition spatiale des champs sur la cellule de Yee
- Maillage non-uniforme
- Insertion d'éléments localisés linéaires et non-linéaires
- Formalisme du champ total/champ diffracté: génération d'une onde plane arbitraire

FDTD: Insertion d'éléments localisés linéaires et non-linéaires

Formulation FDTD généralisée

Modèle diode Schottky

FDTD: Formalisme du champ total / champ diffracté

- ABC de type UPML (Uniaxial Perfectly Matched Layer)
- Formalisme du champ total/champ diffracté pour la génération d'ondes planes arbitraires

Rectenna symétrique à double antenne patch

0	Substrat Rogers Duroid 5880:
\circ	

 $\epsilon r = 2.2, h = 1.575 \text{ mm}, \tan \delta = 0.0009$

Simulation HFSS:

Gain du patch: 7.14 dBi à $\theta = 0^{\circ}$

Surface effective du patch : ~ 60 cm²

Pas spatiaux	Δx	mm	0.467
	Δy		0.279
	Δz		0.788
Pas temporel	Δt	ps	0.726
Nombre de mailles	Nx		227
	Ny		137
	Nz		49
Nombre d'itérations			100000
UPML (ABC)	N		10
	m		3

Paramètres de la simulation FDTD-3D

Rectenna symétrique à double antenne patch : résultats

Impédance de l'antenne patch	Frequency	$\begin{array}{c} {\rm Fundamental} \\ {\rm (2.45GHz)} \end{array}$	2nd harmonic (4.9 GHz)	3rd harmonic (7.35 GHz)
	$R_{in} (\Omega)$	48.9	16	16
	$X_{in} (\Omega)$	5.2	-14	30.9

Rectenna symétrique à double antenne patch : cartographies du courant J_s

 $3.f_0 = 7.35 \text{ GHz}$

Takhedmit, H. ; Cirio, L. ; Merabet, B. ; Allard, B. ; Costa, F. ; Vollaire, C. ; Picon, O. : Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device, *Electronics Letters*, vol. 46, no. 12, 10th June 2010, pp. 811-812.

Mesures en fonction de la densité surfacique de puissance (p)

• Mesures :

Gain du patch: 6.2 dBi à $\theta = 0^{\circ}$

Surface effective du patch : ~50 cm²

5. Application

Alimentation à distance d'un capteur de température

Alimentation à distance d'un capteur de température

- Rectenna efficace en bande ISM à 2.45 GHz avec un rendement de 88%.
- Outil de simulation basé sur la méthode FDTD: Analyse fine et meilleure compréhension du fonctionnement.
- Bonne concordance entre FDTD et mesures (Δ η < 3%).
- Alimentation d'un capteur de température, consommant 31 μJ toutes les 10 secondes, à partir de ρ = 0.4 μW/cm² (E = 1.22 V/m).
- Opter pour des rectennas miniatures et à polarisation circulaire.
- Étendre l'application à un capteur communicant doté de fonctionnalités de traitement avancées.
- Effectuer des mesures en ambiant : TNT, GSM 900/1800, UMTS, LTE, WiFi ...

Conception et Mesure d'un Circuit Rectenna en Bande ISM à 2.45 GHz

Application à l'Alimentation d'un Capteur de Température

Hakim TAKHEDMIT, Laurent CIRIO et Odile PICON

Université Paris-Est Marne-la-Vallée Laboratoire ESYCOM (EA 2552)

Journées scientifiques URSI France, 25-26 Mars 2014 – CNAM, Paris

Mesures en fonction de l'angle d'élévation (θ)

Mesures en fonction de la densité surfacique de puissance (p)

